eulerpi.core.models.base_model module
- class BaseModel(central_param: ndarray, param_limits: ndarray, name: str | None = None)[source]
Bases:
ABC
The base class for all models using the EPI algorithm.
- Parameters:
central_param (np.ndarray) – The central parameter for the model. (Default value = None)
param_limits (np.ndarray) – Box limits for the parameters. The limits are given as a 2D array with shape (param_dim, 2). The parameter limits are used as limits as well as for the movement policy for MCMC sampling, and as boundaries for the grid when using grid-based inference. Overwrite the function param_is_within_domain if the domain is more complex than a box - the grid will still be build based on param_limits, but actual model evaluations only take place within the limits specified in param_is_within_domain. (Default value = None)
name (str) – The name of the model. The class name is used if no name is given. (Default value = None)
Note
Examples of model implementations can be found in the Example Models.
- abstract forward(param: ndarray) ndarray [source]
Executed the forward pass of the model to obtain data from a parameter.
- Parameters:
param (np.ndarray) – The parameter for which the data should be generated.
- Returns:
The data generated from the parameter.
- Return type:
np.ndarray
Examples:
import numpy as np from eulerpi.examples.heat import Heat from eulerpi.core.models import JaxModel from jax import vmap # instantiate the heat model model = Heat() # define a 3D example parameter for the heat model example_param = np.array([1.4, 1.6, 0.5]) # the forward simulation is achieved by using the forward method of the model sim_result = model.forward(example_param) # in a more realistic scenario, we would like to perform the forward pass on multiple parameters at once multiple_params = np.array([[1.5, 1.5, 0.5], [1.4, 1.4, 0.6], [1.6, 1.6, 0.4], model.central_param, [1.5, 1.4, 0.4]]) multiple_sim_results = model.forward_vectorized(multiple_params)
- forward_and_jacobian(param: ndarray) Tuple[ndarray, ndarray] [source]
Evaluates the jacobian and the forward pass of the model at the same time. If the method is not overwritten in a subclass it, it simply calls
forward()
andjacobian()
. It can be vectorized in the same way as the forward and jacobian methods.- Parameters:
param (np.ndarray) – The parameter for which the jacobian should be evaluated.
- Returns:
The data generated from the parameter and the jacobian for the variables returned by the
forward()
method with respect to the parameters.- Return type:
Tuple[np.ndarray, np.ndarray]
- forward_vectorized(params: ndarray) ndarray [source]
A vectorized version of the forward function
- Parameters:
params (np.ndarray) – an array of parameters, shape (n, self.param_dim)
- Returns:
The data vector generated from the vector of parameters, shape (n, self.data_dim)
- Return type:
np.ndarray
- abstract jacobian(param: ndarray) ndarray [source]
Evaluates the jacobian of the
forward()
method.- Parameters:
param (np.ndarray) – The parameter for which the jacobian should be evaluated.
- Returns:
The jacobian for the variables returned by the
forward()
method with respect to the parameters.- Return type:
np.ndarray
Examples:
import numpy as np from eulerpi.examples.heat import Heat from eulerpi.core.models import JaxModel from jax import vmap # instantiate the heat model model = Heat() # define a 3D example parameter for the heat model example_param = np.array([1.4, 1.6, 0.5]) sim_jacobian = model.jacobian(example_param) # Similar to the forward pass, also the evaluation of the jacobian can be vectorized. # This yields a 3D array of shape (num_params, data_dim, param_dim) = (4,5,3) in this example. multiple_params = np.array([[1.5, 1.5, 0.5], [1.4, 1.4, 0.6], model.central_param, [1.5, 1.4, 0.4]]) # try to use jax vmap for vectorization if possible if isinstance(model, JaxModel): multiple_sim_jacobians = vmap(model.jacobian, in_axes=0)(multiple_params) # if the model is not a jax model, we can use numpy vectorize to vectorize else: multiple_sim_jacobians = np.vectorize(model.jacobian, signature="(n)->(m)")(multiple_params)
- param_is_within_domain(param: ndarray) bool [source]
Checks whether a parameter is within the parameter domain of the model. Overwrite this function if your model has a more complex parameter domain than a box. The param_limits are checked automatically.
- Parameters:
param (np.ndarray) – The parameter to check.
- Returns:
True if the parameter is within the limits.
- Return type:
bool
- data_dim: int | None = None
- param_dim: int | None = None