import numpy as np
from eulerpi.core.data_transformations import (
AffineTransformation,
DataIdentity,
DataNormalization,
DataPCA,
)
[docs]
def test_DataIdentity():
"""Test whether the DataIdentity transformation does not change the data."""
data0dim = np.random.rand()
data1dim = np.random.rand(100)
data2dim = np.random.rand(100, 2)
data_transformation = DataIdentity()
assert np.allclose(data_transformation.transform(data0dim), data0dim)
assert np.allclose(data_transformation.transform(data1dim), data1dim)
assert np.allclose(data_transformation.transform(data2dim), data2dim)
[docs]
def test_DataNormalization():
"""Test whether the DataNormalization transformation normalizes the data to zero mean and unit variance."""
data1d = np.random.rand(100, 1)
data2d = np.random.rand(100, 2)
test_data = [(1, data1d), (2, data2d)]
for dim, data in test_data:
data_transformation = DataNormalization(data)
transformed_data = data_transformation.transform(data)
assert np.allclose(
np.mean(transformed_data, axis=0),
np.zeros_like(transformed_data[0]),
)
assert np.allclose(np.cov(transformed_data, rowvar=False), np.eye(dim))
# Check if transform also works for single datapoints
transformed_datapoint = data_transformation.transform(data[0])
assert transformed_datapoint.shape == data[0].shape
[docs]
def test_DataPCA():
"""Test whether the DataPCA transformation is able to run on data with different dimensions."""
n_samples = 100
data1 = np.random.rand(n_samples, 1)
data2 = np.random.rand(n_samples, 2)
data3 = np.random.rand(n_samples, 3)
test_data = [(1, 1, data1), (2, 2, data2), (2, 1, data2), (3, 2, data3)]
for data_dim, pca_dim, data in test_data:
data_transformation = DataPCA(data=data, n_components=pca_dim)
transformed_data = data_transformation.transform(data)
assert transformed_data.shape == (n_samples, pca_dim)
transformed_datapoint = data_transformation.transform(data[0])
assert transformed_datapoint.shape == (pca_dim,)
jacobian = data_transformation.jacobian(data[0])
assert jacobian.shape == (pca_dim, data_dim)